Random forcing, convergence of measures, and cofinality of Boolean algebras

Damian Sobota

Kurt Gödel Research Center for Mathematical Logic University of Vienna

Joint work with Lyubomyr Zdomskyy.

Definition

A compact (Hausdorff) space K is *totally disconnected* (or *zero-dimensional*) if K has a basis of clopens.

Definition

A compact (Hausdorff) space K is *totally disconnected* (or *zero-dimensional*) if K has a basis of clopens.

Examples: 2^{ω} , $\beta \omega$, ω^* ...

Definition

A compact (Hausdorff) space K is *totally disconnected* (or *zero-dimensional*) if K has a basis of clopens.

Examples: 2^{ω} , $\beta \omega$, ω^* ...

Stone space

Let \mathcal{A} be a Boolean algebra. The *Stone space* $St(\mathcal{A})$ of \mathcal{A} is the space of all ultrafilters on \mathcal{A} endowed with the topology generated by sets of the form:

$$[A]_{\mathcal{A}} = \{ \mathcal{U} \in St(\mathcal{A}) \colon A \in \mathcal{U} \}$$

for every $A \in \mathcal{A}$.

Definition

A compact (Hausdorff) space K is *totally disconnected* (or *zero-dimensional*) if K has a basis of clopens.

Examples: 2^{ω} , $\beta \omega$, ω^* ...

Stone space

Let \mathcal{A} be a Boolean algebra. The *Stone space* $St(\mathcal{A})$ of \mathcal{A} is the space of all ultrafilters on \mathcal{A} endowed with the topology generated by sets of the form:

$$[A]_{\mathcal{A}} = \{ \mathcal{U} \in St(\mathcal{A}) \colon A \in \mathcal{U} \}$$

for every $A \in \mathcal{A}$.

Facts

• St(A) is a totally disconnected compact space.

Definition

A compact (Hausdorff) space K is *totally disconnected* (or *zero-dimensional*) if K has a basis of clopens.

Examples: 2^{ω} , $\beta \omega$, ω^* ...

Stone space

Let \mathcal{A} be a Boolean algebra. The *Stone space* $St(\mathcal{A})$ of \mathcal{A} is the space of all ultrafilters on \mathcal{A} endowed with the topology generated by sets of the form:

$$[A]_{\mathcal{A}} = \{ \mathcal{U} \in St(\mathcal{A}) \colon A \in \mathcal{U} \}$$

for every $A \in \mathcal{A}$.

Facts

- St(A) is a totally disconnected compact space.
- **2** *Clopen*(St(A)) is isomorphic to A.

σ -complete Boolean algebras

Definition

A compact space K is *basically disconnected* if every open \mathbb{F}_{σ} -set has open closure.

A compact space K is *basically disconnected* if every open \mathbb{F}_{σ} -set has open closure.

Example: $\beta \omega$ Non-examples: 2^{ω} , ω^*

A compact space K is *basically disconnected* if every open \mathbb{F}_{σ} -set has open closure.

Example: $\beta \omega$ Non-examples: 2^{ω} , ω^*

Definition

A Boolean algebra \mathcal{A} is σ -complete if every countable subset of \mathcal{A} has supremum in \mathcal{A} .

A compact space K is *basically disconnected* if every open \mathbb{F}_{σ} -set has open closure.

Example: $\beta \omega$ Non-examples: 2^{ω} , ω^*

Definition

A Boolean algebra \mathcal{A} is σ -complete if every countable subset of \mathcal{A} has supremum in \mathcal{A} .

Examples: $\wp(\omega)$ Non-examples: *Free*(ω), $\wp(\omega)/Fin$

A compact space K is *basically disconnected* if every open \mathbb{F}_{σ} -set has open closure.

Example: $\beta \omega$ Non-examples: 2^{ω} , ω^*

Definition

A Boolean algebra \mathcal{A} is σ -complete if every countable subset of \mathcal{A} has supremum in \mathcal{A} .

Examples: $\wp(\omega)$ Non-examples: $Free(\omega)$, $\wp(\omega)/Fin$

Fact

A Boolean algebra A is σ -complete if and only if St(A) is basically disconnected.

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathbb{P} be a notion of forcing adding a Cohen real.

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathbb{P} be a notion of forcing adding a Cohen real. Then, in any \mathbb{P} -generic extension V[G], the Stone space $St(\mathcal{A})$ contains a non-trivial convergent sequence.

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathbb{P} be a notion of forcing adding a Cohen real. Then, in any \mathbb{P} -generic extension V[G], the Stone space $St(\mathcal{A})$ contains a non-trivial convergent sequence.

Random forcing

 $\kappa \geqslant \omega$ — a cardinal number

 λ_{κ} — the standard product measure on 2^{κ}

 $\mathbb{M}_{\kappa} = Bor(2^{\kappa})/\{A \in Bor(2^{\kappa}): \ \lambda_{\kappa}(A) = 0\}$

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathbb{P} be a notion of forcing adding a Cohen real. Then, in any \mathbb{P} -generic extension V[G], the Stone space $St(\mathcal{A})$ contains a non-trivial convergent sequence.

Random forcing

 $\kappa \geqslant \omega$ — a cardinal number

$$\lambda_{\kappa}$$
 — the standard product measure on 2^{κ}

 $\mathbb{M}_{\kappa} = Bor(2^{\kappa})/\{A \in Bor(2^{\kappa}): \lambda_{\kappa}(A) = 0\}$

Theorem (Dow-Fremlin)

Let $\mathcal{A} \in V$ be a ground model σ -complete Boolean algebra.

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathbb{P} be a notion of forcing adding a Cohen real. Then, in any \mathbb{P} -generic extension V[G], the Stone space $St(\mathcal{A})$ contains a non-trivial convergent sequence.

Random forcing

 $\kappa \geqslant \omega$ — a cardinal number

$$\lambda_{\kappa}$$
 — the standard product measure on 2^{κ}

$$\mathbb{M}_{\kappa} = Bor(2^{\kappa})/\{A \in Bor(2^{\kappa}): \ \lambda_{\kappa}(A) = 0\}$$

Theorem (Dow-Fremlin)

Let $\mathcal{A} \in V$ be a ground model σ -complete Boolean algebra. Then, in any \mathbb{M}_{κ} -generic extension V[G], the Stone space $St(\mathcal{A})$ does not contain any non-trivial convergent sequences.

$$K$$
 — compact space, $x \in K$, $A \subseteq K$

$$\delta_x(A) = egin{cases} 1, & ext{if } x \in A, \ 0, & ext{if } x
ot\in A. \end{cases}$$

$$K$$
 — compact space, $x \in K$, $A \subseteq K$

$$\delta_x(A) = egin{cases} 1, & ext{if } x \in A, \ 0, & ext{if } x
ot \in A. \end{cases}$$

Observation

Let *K* be a totally disconnected compact space, $\langle x_n: n \in \omega \rangle$ a non-trivial sequence in *K*, and $x \in K$. Then:

$$K$$
 — compact space, $x \in K$, $A \subseteq K$

$$\delta_x(A) = egin{cases} 1, & ext{if } x \in A, \ 0, & ext{if } x
ot \in A. \end{cases}$$

Observation

Let *K* be a totally disconnected compact space, $\langle x_n: n \in \omega \rangle$ a non-trivial sequence in *K*, and $x \in K$. Then:

$$x_n \to x \iff \forall \text{ clopen set } U \subseteq K: \delta_{x_n}(U) \to \delta_x(U)$$

$$K$$
 — compact space, $x \in K$, $A \subseteq K$

$$\delta_x(A) = egin{cases} 1, & ext{if } x \in A, \ 0, & ext{if } x
ot \in A. \end{cases}$$

Observation

Let *K* be a totally disconnected compact space, $\langle x_n: n \in \omega \rangle$ a non-trivial sequence in *K*, and $x \in K$. Then:

$$x_n o x \iff \forall$$
 clopen set $U \subseteq K \colon \delta_{x_n}(U) o \delta_x(U)$

$$\Longrightarrow orall ext{ clopen set } U \subseteq K ext{: } rac{1}{2} \delta_{x_{2n}}(U) - rac{1}{2} \delta_{x_{2n+1}}(U) o 0.$$

Definition

Let K be a totally disconnected compact space. A sequence $\langle \mu_n : n \in \omega \rangle$ of Borel measures on K such that:

• each $\mu_n = \sum_{x \in F_n} \alpha_x \delta_x$, where $F_n \in [K]^{<\omega}$ (finite support) and $\sum_{x \in F_n} |\alpha_x| = 1$,

Definition

Let K be a totally disconnected compact space. A sequence $\langle \mu_n: n \in \omega \rangle$ of Borel measures on K such that:

- each $\mu_n = \sum_{x \in F_n} \alpha_x \delta_x$, where $F_n \in [K]^{<\omega}$ (finite support) and $\sum_{x \in F_n} |\alpha_x| = 1$,
- $\mu_n(U)
 ightarrow 0$ for every clopen set $U \subseteq K$,

Definition

Let K be a totally disconnected compact space. A sequence $\langle \mu_n : n \in \omega \rangle$ of Borel measures on K such that:

- each $\mu_n = \sum_{x \in F_n} \alpha_x \delta_x$, where $F_n \in [K]^{<\omega}$ (finite support) and $\sum_{x \in F_n} |\alpha_x| = 1$,
- $\mu_n(U)
 ightarrow 0$ for every clopen set $U \subseteq K$,

is called a finitely supported Josefson–Nissenzweig sequence on K, or, in short, a JN-sequence.

Definition

Let K be a totally disconnected compact space. A sequence $\langle \mu_n: n \in \omega \rangle$ of Borel measures on K such that:

- each $\mu_n = \sum_{x \in F_n} \alpha_x \delta_x$, where $F_n \in [K]^{<\omega}$ (finite support) and $\sum_{x \in F_n} |\alpha_x| = 1$,
- $\mu_n(U)
 ightarrow 0$ for every clopen set $U \subseteq K$,

is called a finitely supported Josefson–Nissenzweig sequence on K, or, in short, a JN-sequence.

Observation

Let $\langle \mu_n : n \in \omega \rangle$ be a bounded sequence of finitely supported measures on totally disconnected compact K. Then:

$$\forall$$
 clopen set $U \subseteq K: \mu_n(U) \rightarrow 0$

Definition

Let K be a totally disconnected compact space. A sequence $\langle \mu_n: n \in \omega \rangle$ of Borel measures on K such that:

- each $\mu_n = \sum_{x \in F_n} \alpha_x \delta_x$, where $F_n \in [K]^{<\omega}$ (finite support) and $\sum_{x \in F_n} |\alpha_x| = 1$,
- $\mu_n(U)
 ightarrow 0$ for every clopen set $U \subseteq K$,

is called a finitely supported Josefson–Nissenzweig sequence on K, or, in short, a JN-sequence.

Observation

Let $\langle \mu_n : n \in \omega \rangle$ be a bounded sequence of finitely supported measures on totally disconnected compact K. Then:

 \forall clopen set $U \subseteq K: \mu_n(U) \rightarrow 0$

 $\iff \forall f \in C(K): \int_K f d\mu_n \to 0 \text{ (weak* convergence)}.$

Theorem (Josefson-Nissenzweig)

For every infinite-dimensional Banach space X there exists a sequence $\langle x_n^*: n \in \omega \rangle$ of continuous functionals in the dual space X^* such that $||x_n^*|| = 1$ for every $n \in \omega$ and $x_n^*(x) \to 0$ for every $x \in X$.

• spaces with non-trivial convergent sequences

- spaces with non-trivial convergent sequences
- metric spaces

- spaces with non-trivial convergent sequences
- metric spaces
- Eberlein, Corson, Valdivia spaces...

- spaces with non-trivial convergent sequences
- metric spaces
- Eberlein, Corson, Valdivia spaces...
- products $K \times L$ of arbitrary spaces, in particular $\beta \omega \times \beta \omega$

- spaces with non-trivial convergent sequences
- metric spaces
- Eberlein, Corson, Valdivia spaces...
- products $K \times L$ of arbitrary spaces, in particular $\beta \omega \times \beta \omega$
- limits $\varprojlim \langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha \leq \beta < \delta \rangle$ based on simple extensions

- spaces with non-trivial convergent sequences
- metric spaces
- Eberlein, Corson, Valdivia spaces...
- products $K \times L$ of arbitrary spaces, in particular $\beta \omega \times \beta \omega$
- limits $\varprojlim \langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha \leq \beta < \delta \rangle$ based on simple extensions

Non-examples

 \bullet basically disconnected spaces, in particular $\beta\omega$

- spaces with non-trivial convergent sequences
- metric spaces
- Eberlein, Corson, Valdivia spaces...
- products $K \times L$ of arbitrary spaces, in particular $\beta \omega \times \beta \omega$
- limits $\varprojlim \langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha \leq \beta < \delta \rangle$ based on simple extensions

Non-examples

- \bullet basically disconnected spaces, in particular $\beta\omega$
- F-spaces, in particular ω^*

- spaces with non-trivial convergent sequences
- metric spaces
- Eberlein, Corson, Valdivia spaces...
- products $K \times L$ of arbitrary spaces, in particular $\beta \omega \times \beta \omega$
- limits $\varprojlim \langle K_{\alpha}, \pi_{\alpha}^{\beta} : \alpha \leq \beta < \delta \rangle$ based on simple extensions

Non-examples

- \bullet basically disconnected spaces, in particular $\beta\omega$
- F-spaces, in particular ω^*
- K for which C(K) is a Grothendieck space

Theorem

Forcing notions adding Cohen reals add JN-sequences of the form $\frac{1}{2}\delta_{x_n} - \frac{1}{2}\delta_x$ to the Stone spaces of ground model Boolean algebras.

Theorem

Forcing notions adding Cohen reals add JN-sequences of the form $\frac{1}{2}\delta_{x_n} - \frac{1}{2}\delta_x$ to the Stone spaces of ground model Boolean algebras.

Theorem

 \mathbb{M}_{κ} does not add JN-sequences of the form $\frac{1}{2}\delta_{x_n} - \frac{1}{2}\delta_x$ to the Stone spaces of ground model σ -complete Boolean algebras.

Forcing notions adding Cohen reals add JN-sequences of the form $\frac{1}{2}\delta_{x_n} - \frac{1}{2}\delta_x$ to the Stone spaces of ground model Boolean algebras.

Theorem

 \mathbb{M}_{κ} does not add JN-sequences of the form $\frac{1}{2}\delta_{x_n} - \frac{1}{2}\delta_x$ to the Stone spaces of ground model σ -complete Boolean algebras.

Main Question

Does \mathbb{M}_{κ} add JN-sequences of *some other* form to the Stone spaces of ground model (σ -complete) Boolean algebras?

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathbb{P} be a forcing adding a random real. Then, in any \mathbb{P} -generic extension V[G], there is a JN-sequence on the Stone space $St(\mathcal{A})$.

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathbb{P} be a forcing adding a random real. Then, in any \mathbb{P} -generic extension V[G], there is a JN-sequence on the Stone space $St(\mathcal{A})$.

Sketch of the proof

 $r\in 2^\omega$ — a random real over V

 $\langle x_n: n \in \omega
angle \in V$ — a non-trivial sequence of ultrafilters on $\mathcal A$

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathbb{P} be a forcing adding a random real. Then, in any \mathbb{P} -generic extension V[G], there is a JN-sequence on the Stone space $St(\mathcal{A})$.

Sketch of the proof

 $r\in 2^\omega$ — a random real over V

 $\langle x_n: n \in \omega
angle \in V$ — a non-trivial sequence of ultrafilters on $\mathcal A$

$$\mu_n = \frac{1}{2^n} \sum_{i=2^n+1}^{2^{n+1}} (-1)^{r(i)+1} \cdot \delta_{x_i}$$

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathbb{P} be a forcing adding a random real. Then, in any \mathbb{P} -generic extension V[G], there is a JN-sequence on the Stone space $St(\mathcal{A})$.

Sketch of the proof

$$r\in 2^\omega$$
 — a random real over V

 $\langle x_n: n \in \omega
angle \in V$ — a non-trivial sequence of ultrafilters on $\mathcal A$

$$\mu_n = \frac{1}{2^n} \sum_{i=2^n+1}^{2^{n+1}} (-1)^{r(i)+1} \cdot \delta_{x_i}$$

Weak Law of Large Numbers + Borel-Cantelli Lemma $\implies \langle \mu_n : n \in \omega \rangle$ is a JN-sequence on $St(\mathcal{A})$ in V[G]

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathbb{P} be a forcing adding a random real. Then, in any \mathbb{P} -generic extension V[G], there is a JN-sequence on the Stone space $St(\mathcal{A})$.

Sketch of the proof

$$r\in 2^\omega$$
 — a random real over V

 $\langle x_n: n \in \omega
angle \in V$ — a non-trivial sequence of ultrafilters on $\mathcal A$

$$\mu_n = \frac{1}{2^n} \sum_{i=2^n+1}^{2^{n+1}} (-1)^{r(i)+1} \cdot \delta_{x_i}$$

Weak Law of Large Numbers + Borel–Cantelli Lemma \implies $\langle \mu_n: n \in \omega \rangle$ is a JN-sequence on $St(\mathcal{A})$ in V[G]

Observe: $|\operatorname{supp}(\mu_n)| = 2^n$! So, $\lim_{n \to \infty} |\operatorname{supp}(\mu_n)| = \infty$.

Let $\mathcal{A} \in V$ be a ground model σ -complete Boolean algebra.

Let $\mathcal{A} \in V$ be a ground model σ -complete Boolean algebra. Then, in any \mathbb{M}_{κ} -generic extension V[G], the Stone space $St(\mathcal{A})$ does not admit any JN-sequence $\langle \mu_n : n \in \omega \rangle$ for which there exists $M \in \omega$ such that $|\operatorname{supp}(\mu_n)| \leq M$ for all $n \in \omega$.

Let $\mathcal{A} \in V$ be a ground model σ -complete Boolean algebra. Then, in any \mathbb{M}_{κ} -generic extension V[G], the Stone space $St(\mathcal{A})$ does not admit any JN-sequence $\langle \mu_n : n \in \omega \rangle$ for which there exists $M \in \omega$ such that $|\operatorname{supp}(\mu_n)| \leq M$ for all $n \in \omega$.

Proposition

For every totally disconnected compact space K, TFAE:

• K admits a JN-sequence $\langle \mu_n : n \in \omega \rangle$ such that $|\operatorname{supp}(\mu_n)| \leq M$ for some $M \in \omega$ and all $n \in \omega$;

Let $\mathcal{A} \in V$ be a ground model σ -complete Boolean algebra. Then, in any \mathbb{M}_{κ} -generic extension V[G], the Stone space $St(\mathcal{A})$ does not admit any JN-sequence $\langle \mu_n : n \in \omega \rangle$ for which there exists $M \in \omega$ such that $|\operatorname{supp}(\mu_n)| \leq M$ for all $n \in \omega$.

Proposition

For every totally disconnected compact space K, TFAE:

- K admits a JN-sequence ⟨μ_n: n ∈ ω⟩ such that |supp(μ_n)| ≤ M for some M ∈ ω and all n ∈ ω;
- **3** K admits a JN-sequence $\langle \mu_n : n \in \omega \rangle$ such that $|\operatorname{supp}(\mu_n)| = 2$ for all $n \in \omega$.

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Assume that $\langle \dot{\mathcal{U}}_n : n \in \omega \rangle$ is a sequence of \mathbb{M}_{κ} -names for distinct ultrafilters on \mathcal{A} . Let G be a \mathbb{M}_{κ} -generic filter over V.

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Assume that $\langle \dot{\mathcal{U}}_n : n \in \omega \rangle$ is a sequence of \mathbb{M}_{κ} -names for distinct ultrafilters on \mathcal{A} . Let G be a \mathbb{M}_{κ} -generic filter over V. Then, for every condition $p \in \mathbb{M}_{\kappa}$ there are a condition $q \leq p$ and a sequence $\langle A_n : n \in \omega \rangle \in V$ of pairwise disjoint elements of \mathcal{A} such that $q \Vdash [A_n]_{\mathcal{A}} \cap \{ \dot{\mathcal{U}}_k : k \in \omega \} \neq \emptyset$ for every $n \in \omega$.

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Assume that $\langle \dot{\mathcal{U}}_n : n \in \omega \rangle$ is a sequence of \mathbb{M}_{κ} -names for distinct ultrafilters on \mathcal{A} . Let G be a \mathbb{M}_{κ} -generic filter over V. Then, for every condition $p \in \mathbb{M}_{\kappa}$ there are a condition $q \leq p$ and a sequence $\langle A_n : n \in \omega \rangle \in V$ of pairwise disjoint elements of \mathcal{A} such that $q \Vdash [A_n]_{\mathcal{A}} \cap \{\dot{\mathcal{U}}_k : k \in \omega\} \neq \emptyset$ for every $n \in \omega$.

Theorem (Borodulin-Nadzieja–S.)

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let \mathcal{U} and \mathcal{V} be \mathbb{M}_{κ} -names for ultrafilters on \mathcal{A} . Let $p \in \mathbb{M}_{\kappa}$ be a condition such that $p \Vdash \mathcal{U} \neq \mathcal{V}$.

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Assume that $\langle \dot{\mathcal{U}}_n : n \in \omega \rangle$ is a sequence of \mathbb{M}_{κ} -names for distinct ultrafilters on \mathcal{A} . Let G be a \mathbb{M}_{κ} -generic filter over V. Then, for every condition $p \in \mathbb{M}_{\kappa}$ there are a condition $q \leq p$ and a sequence $\langle A_n : n \in \omega \rangle \in V$ of pairwise disjoint elements of \mathcal{A} such that $q \Vdash [A_n]_{\mathcal{A}} \cap \{ \dot{\mathcal{U}}_k : k \in \omega \} \neq \emptyset$ for every $n \in \omega$.

Theorem (Borodulin-Nadzieja–S.)

Let $\mathcal{A} \in V$ be a ground model Boolean algebra. Let $\dot{\mathcal{U}}$ and $\dot{\mathcal{V}}$ be \mathbb{M}_{κ} -names for ultrafilters on \mathcal{A} . Let $p \in \mathbb{M}_{\kappa}$ be a condition such that $p \Vdash \dot{\mathcal{U}} \neq \dot{\mathcal{V}}$. Then, for every $\varepsilon > 0$ there are a condition $q \leq p$ and an element $C \in \mathcal{A}$ such that $\lambda_{\kappa}(q) > \lambda_{\kappa}(p)/4 - \varepsilon$ and $q \Vdash C \in \dot{\mathcal{U}} \triangle \dot{\mathcal{V}}$.

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P} -generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leq * f$, there exists $H \colon \omega \to [\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leq n+1$ for every $n \in \omega$.

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P} -generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leq * f$, there exists $H: \omega \to [\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leq n+1$ for every $n \in \omega$.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller, Silver(-like)

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P} -generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leq f$, there exists $H: \omega \to [\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leq n+1$ for every $n \in \omega$.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller, Silver(-like)

Definition

A forcing $\mathbb{P} \in V$ preserves the ground model reals non-meager if $\mathbb{R} \cap V$ is a non-meager subset of $\mathbb{R} \cap V[G]$ for any \mathbb{P} -generic filter G.

A forcing $\mathbb{P} \in V$ has the Laver property if for every \mathbb{P} -generic filter G over V, every $f \in \omega^{\omega} \cap V$ and $g \in \omega^{\omega} \cap V[G]$ such that $g \leq f$, there exists $H: \omega \to [\omega]^{<\omega}$ such that $g(n) \in H(n)$ and $|H(n)| \leq n+1$ for every $n \in \omega$.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller, Silver(-like)

Definition

A forcing $\mathbb{P} \in V$ preserves the ground model reals non-meager if $\mathbb{R} \cap V$ is a non-meager subset of $\mathbb{R} \cap V[G]$ for any \mathbb{P} -generic filter G.

Examples: Sacks, side-by-side Sacks, Miller, Silver(-like)

Theorem (S.–Zdomskyy)

Let $\mathcal{A} \in V$ be a ground model σ -complete Boolean algebra. Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager.

Theorem (S.–Zdomskyy)

Let $\mathcal{A} \in V$ be a ground model σ -complete Boolean algebra. Let $\mathbb{P} \in V$ be a notion of proper forcing having the Laver property and preserving the ground model reals non-meager. Then, in any \mathbb{P} -generic extension V[G], $St(\mathcal{A})$ does not admit any JN-sequences.

$$c_0 = \{x \in \mathbb{R}^\omega : x(n) \to 0\}$$

Two topologies on c_0

- norm $||x||_{\infty} = \sup_{n \in \omega} |x(n)|$, making c_0 a Banach space
- pointwise topology τ_{p} inherited from \mathbb{R}^{ω}

$$c_0 = \{x \in \mathbb{R}^\omega : x(n) \to 0\}$$

Two topologies on *c*0

- norm $||x||_{\infty} = \sup_{n \in \omega} |x(n)|$, making c_0 a Banach space
- pointwise topology au_p inherited from \mathbb{R}^{ω}

Theorem (Banakh–Kąkol–Śliwa)

For every totally disconnected compact space K TFAE:

K admits a JN-sequence sequence,

$$c_0 = \{x \in \mathbb{R}^\omega : x(n) \to 0\}$$

Two topologies on *c*0

- norm $||x||_{\infty} = \sup_{n \in \omega} |x(n)|$, making c_0 a Banach space
- pointwise topology au_p inherited from \mathbb{R}^{ω}

Theorem (Banakh–Kąkol–Śliwa)

For every totally disconnected compact space K TFAE:

- K admits a JN-sequence sequence,
- $C_p(K)$ has a complemented copy of (c_0, τ_p) .

$$c_0 = \{x \in \mathbb{R}^\omega : x(n) \to 0\}$$

Two topologies on *c*0

- norm $||x||_{\infty} = \sup_{n \in \omega} |x(n)|$, making c_0 a Banach space
- pointwise topology au_p inherited from \mathbb{R}^{ω}

Theorem (Banakh–Kąkol–Śliwa)

For every totally disconnected compact space K TFAE:

- K admits a JN-sequence sequence,
- 2 $C_p(K)$ has a complemented copy of (c_0, τ_p) .

Corollary (by the Closed Graph Theorem)

If K as above admits a JN-sequence, then the Banach space C(K) has a complemented copy of $(c_0, \|\cdot\|_{\infty})$.

Corollary

Let $\mathcal{A} = \wp(\omega) \cap V$. Then,

In V, C(St(A)) does not have any complemented copies of (c₀, || · ||∞) (Sobczyk's theorem);

Corollary

Let $\mathcal{A} = \wp(\omega) \cap V$. Then,

- In V, C(St(A)) does not have any complemented copies of (c₀, || · ||∞) (Sobczyk's theorem);
- ${f O}$ in $V^{\mathbb{M}_{\kappa}}$, $C(St(\mathcal{A}))$ has a complemented copy of $(c_0, \|\cdot\|_{\infty})$.

Corollary

Let $\mathcal{A} = \wp(\omega) \cap V$. Then,

- In V, C(St(A)) does not have any complemented copies of (c₀, || · ||∞) (Sobczyk's theorem);
- ${f O}$ in $V^{\mathbb{M}_{\kappa}}$, $C(St(\mathcal{A}))$ has a complemented copy of $(c_0, \|\cdot\|_{\infty})$.

Theorem

If \mathbb{P} is a proper notion of forcing having the Laver property and preserving ground model reals non-meager, then, in $V^{\mathbb{P}}$, $C(St(\mathcal{A}))$ does not have any complemented copies of $(c_0, \|\cdot\|_{\infty})$.

Definition

The cofinality cf(\mathcal{A}) of an infinite Boolean algebra \mathcal{A} is the minimal cardinality κ of an increasing chain $\langle \mathcal{A}_{\xi} : \xi < \kappa \rangle$ of proper subalgebras of \mathcal{A} such that $\mathcal{A} = \bigcup_{\xi < \kappa} \mathcal{A}_{\xi}$.

Definition

The cofinality cf(\mathcal{A}) of an infinite Boolean algebra \mathcal{A} is the minimal cardinality κ of an increasing chain $\langle \mathcal{A}_{\xi} : \xi < \kappa \rangle$ of proper subalgebras of \mathcal{A} such that $\mathcal{A} = \bigcup_{\xi < \kappa} \mathcal{A}_{\xi}$.

Theorem (Koppelberg)

For any infinite Boolean algebra \mathcal{A} , $\omega \leq cf(\mathcal{A}) \leq \mathfrak{c}$.

Definition

The cofinality cf(\mathcal{A}) of an infinite Boolean algebra \mathcal{A} is the minimal cardinality κ of an increasing chain $\langle \mathcal{A}_{\xi} : \xi < \kappa \rangle$ of proper subalgebras of \mathcal{A} such that $\mathcal{A} = \bigcup_{\xi < \kappa} \mathcal{A}_{\xi}$.

Theorem (Koppelberg)

For any infinite Boolean algebra \mathcal{A} , $\omega \leq cf(\mathcal{A}) \leq \mathfrak{c}$.

Examples

•
$$|\mathcal{A}| \leqslant \omega \implies \mathsf{cf}(\mathcal{A}) = \omega$$
,

Definition

The cofinality cf(\mathcal{A}) of an infinite Boolean algebra \mathcal{A} is the minimal cardinality κ of an increasing chain $\langle \mathcal{A}_{\xi} : \xi < \kappa \rangle$ of proper subalgebras of \mathcal{A} such that $\mathcal{A} = \bigcup_{\xi < \kappa} \mathcal{A}_{\xi}$.

Theorem (Koppelberg)

For any infinite Boolean algebra \mathcal{A} , $\omega \leq cf(\mathcal{A}) \leq \mathfrak{c}$.

Examples

•
$$|\mathcal{A}|\leqslant\omega\implies \mathsf{cf}(\mathcal{A})=\omega$$
,

• $\mathcal{A} - \sigma$ -complete $\implies \mathsf{cf}(\mathcal{A}) = \omega_1$ (Koppelberg)

Definition

The cofinality cf(\mathcal{A}) of an infinite Boolean algebra \mathcal{A} is the minimal cardinality κ of an increasing chain $\langle \mathcal{A}_{\xi} : \xi < \kappa \rangle$ of proper subalgebras of \mathcal{A} such that $\mathcal{A} = \bigcup_{\xi < \kappa} \mathcal{A}_{\xi}$.

Theorem (Koppelberg)

For any infinite Boolean algebra \mathcal{A} , $\omega \leq cf(\mathcal{A}) \leq \mathfrak{c}$.

Examples

•
$$|\mathcal{A}|\leqslant\omega\implies \mathsf{cf}(\mathcal{A})=\omega$$
,

• $\mathcal{A} - \sigma$ -complete \implies cf $(\mathcal{A}) = \omega_1$ (Koppelberg)

Open question (Koppelberg)

Does there consistently exist a Boolean algebra $\mathcal A$ such that $\mathsf{cf}(\mathcal A) > \omega_1$?

Proposition (folklore)

For any infinite Boolean algebra \mathcal{A} , TFAE:

•
$$cf(\mathcal{A}) = \omega$$
,

Proposition (folklore)

For any infinite Boolean algebra \mathcal{A} , TFAE:

•
$$cf(\mathcal{A}) = \omega$$
,

② there is a non-trivial discrete sequence $\langle x_n : n \in \omega \rangle$ in St(A) such that for all clopen U ⊆ St(A) and almost all $n \in \omega$ we have:

$$x_{2n} \in U \iff x_{2n+1} \in U.$$

Proposition (folklore)

For any infinite Boolean algebra \mathcal{A} , TFAE:

•
$$cf(\mathcal{A}) = \omega$$
,

② there is a non-trivial discrete sequence $\langle x_n : n \in \omega \rangle$ in St(A) such that for all clopen U ⊆ St(A) and almost all $n \in \omega$ we have:

$$x_{2n} \in U \iff x_{2n+1} \in U.$$

Corollary

Let $\mathcal{A} \in V$ be a ground model σ -complete Boolean algebra. Then, in any \mathbb{M}_{κ} -generic extension V[G], we have $cf(\mathcal{A}) = \omega_1$.

Thank you for the attention!